منابع مشابه
Mechanical control of tissue morphogenesis.
Mechanical forces participate in morphogenesis from the level of individual cells to whole organism patterning. This article reviews recent research that has identified specific roles for mechanical forces in important developmental events. One well defined example is that dynein-driven cilia create fluid flow that determines left-right patterning in the early mammalian embryo. Fluid flow is al...
متن کاملMechanical control of tissue morphogenesis during embryological development.
Twenty years ago, we proposed a model of developmental control based on tensegrity architecture, in which tissue pattern formation in the embryo is controlled through mechanical interactions between cells and extracellular matrix (ECM) which place the tissue in a state of isometric tension (prestress). The model proposed that local changes in the mechanical compliance of the ECM, for example, d...
متن کاملGeometric control of tissue morphogenesis.
Morphogenesis is the dynamic and regulated change in tissue form that leads to creation of the body plan and development of mature organs. Research over the past several decades has uncovered a multitude of genetic factors required for morphogenesis in animals. The behaviors of individual cells within a developing tissue are determined by combining these genetic signals with information from th...
متن کاملEmerin and the Nuclear Lamina in Muscle and Cardiac Disease Mechanical Control of Tissue Morphogenesis
The human genome is contained within the nucleus and is separated from the cytoplasm by the nuclear envelope. Mutations in the nuclear envelope proteins emerin and lamin A cause a number of diseases including premature aging syndromes, muscular dystrophy, and cardiomyopathy. Emerin and lamin A are implicated in regulating muscleand heart-specific gene expression and nuclear architecture. For ex...
متن کاملMechanical control of tissue and organ development.
Many genes and molecules that drive tissue patterning during organogenesis and tissue regeneration have been discovered. Yet, we still lack a full understanding of how these chemical cues induce the formation of living tissues with their unique shapes and material properties. Here, we review work based on the convergence of physics, engineering and biology that suggests that mechanical forces g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Circulation Research
سال: 2008
ISSN: 0009-7330,1524-4571
DOI: 10.1161/circresaha.108.175331